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One of the more effective devices used for the suppression of vibrations in engineer- 
ing is the dynamic absorber [i, 2]. It has the advantage that the dimensions of the ab- 
sorber can be small in comparison with those of the primary vibratory system. In particular, 
the Helmholtz resonator functions as a dynamic absorber when it is used for noise suppres- 
sion. It should he noted, however, that the Helmholtz resonator in its classical form oper- 
ates as a reactive absorber and has the drawback of a limited frequency range in which it 
works efficiently [3]. 

Here we discuss a planar model of a resonator, from which a gas jet issues and which is 
used to suppress acoustic vibrations in a bounded volume. Since part of the acoustic energy 
in this case is spent in the generation of vortices as the jet flows from the resonator, we 
say that such a resonator is active. 

I. THE RESONATOR AS A DYNAMIC ABSORBER 

The operating mechanism of the Helmholtz resonator as a dynamic absorber can be illu- 
strated in a simple model. The Helmholtz resonator is modeled by a rectangular channel ~2, 
which is appended to one side of a rectangular region ~i (Fig. i), whose opposite side radi- 
ates acoustic energy at a given frequency to. Introducing the assumptions 

e << l, e << b << a, (I.i) 

we analyze the problem of determining the amplitude function 'P of the velocity potential 

~(t, x, y) = q~(x, y) cos o)t ( 1 . 2 )  

in the region ~2 == QI U Q~, where the potential satisfies the Helmholtz equation 

A~ + k2~ = 0 ( I . 3 )  

( k = ~ / c o  i s  t h e  wave number,  and c o i s  t h e  sound v e l o c i t y ) ,  s u b j e c t  t o  t h e  bounda ry  c o n d i -  
tions 

aT/0v = 0 for (x, N) ~ L' (1.4) 

(L' is the contour of the rigid boundary of the region, exclusive of the part x = a, and 
v is the direction of the normal to L'); 

Oq)/cgx == I for X --= a, 0 < lY] < b/2; (1.5) 

r  fo r  x = - - l , O <  I g l < e / 2 .  ( 1 . 6 )  

In the vicinity of resonance with the natural frequencies of the lowest vibrational 
mode in the region ~l, the approximation solution of problem (1.2)-(1.6) can be written in 
the form 

~i = A cos kxinQl; (i. 7) 

~2 = B sin k(x + /)inf~ 2. (1.8) 

Since Eqs. (1.7) and (1.8) are approximate, the relation between the functions r and % 
is not established by matching them at the common part of the boundary of the regions ~l and 
$2, but is determined from the energy conservation law [4] 

Ot~ y y E d ~  + ~ I 'vds---O" ( 1 . 9 )  
~j L~ 
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Here E is the acoustic energy density, 
and w is the outward normal to the contour Lj of the region aj (j = i, 2). 

We write the energy flux from the resonator into ~I approximately as 

e/2 

J = - -  flo -5-i- ~ dy  ~- - -  -~ p0(oke cos k I .  sin 2(ot. A B .  

-el2 

Taking Eq. (i.i0) into account and applying Eq. (1.9) to el, we obtain 

bk sin 2 k a . A  - -  2k8 cos k I . B  ~= - -2b  cos k a .  

A p p l y i n g  Eq. ( 1 . 9 )  t o  a 2 ,  we h a v e  

28 cos k l  . A - -  b sin 2 k l  . B = O. 

S o l v i n g  t h e  s y s t e m  ( 1 . 1 1 ) ,  ( 1 . 1 2 ) ,  we o b t a i n  

I is the intensity vector (acoustic energy flux), 

(1.1o) 

(l.ll) 

(I.12) 

(1.13) 

(1.14) 
A : :  - -2b2cos  ka . s in  2 k l / D ;  

B := - -4b2cos  ka.cos k l / D ,  

where 

O =~ k ( b ~ s i n 2 k a . s i n  2k~ - -  4e2cos ~ k~). ( 1 . 1 5 )  

We note that this solution corresponds exactly with the theory of dynamic absorption 
[I, 2]. Above all, when the resonator frequency m r = ~c0/s coincides with the natural fre- 
quency in the main region m0 = ~c0/a at resonance, so that m = ~0 = mr, the amplitude A § 0, 
i.e., the vibrations are completely suppressed. The suppression mechanism follows from the 
expression (i.i0) for the acoustic energy flux from the resonator, which is equal in abso- 
lute value and opposite in sign to the acoustic energy flux from the external source when the 
value of B = b/ek is taken into account in this regime. Moreover, the solution (1o13), (1.14) 
reflects the shortcoming of dynamic absorbers operating without energy dissipation. The 
problem is that such absorbers are effective only in a narrow frequency range. Thus, by 
setting D (1.15) equal to zero in the case of "well-tuned" resonators, such that ~ = mr/m0 - 
i ~ I, where the resonator volume is sufficiently small in comparison with the volume of the 

main region a~, i.e., ~ = s/b ~ I, we find that A + ~ at e~o~o I + 

(k0 = m0b/c0 is the normalized natural frequency in ~l)- 

2. ACTIVE RESONATOR MODEL 

The efficiency of the resonator when it is used to absorb acoustic energy in a certain 
volume can be increased substantially by causing a gas jet to issue from the throat of the 
resonator. In this case the part of the acoustic energy arriving from the external source 
is spent in vortex generation. 

To estimate qualitatively the influence of a jet on the resonator efficiency, we con- 
sider a planar model of acoustic vibrations in a certain rectangular region ~l and an active 
resonator ~0 (with a gas jet issuing from it) attached to this region (Fig. 2). We assume 
for simplicity that the gas jet issues from the resonator at a velocity U without expanding 
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and escapes from the main region through a hole at the opposite end of the region ~i. We 
consider the resonator to be situated in an arbitrary position, described by the parameter 
c, on the symmetry axis of this region. 

Let a source of acoustic vibrations with frequency ~ be located on the right boundary 
of ~l. We investigate the problem of determining the amplitude function of the transient 
component of the pressure in the domain ~ = Q0U Q~ 

p'( t ,  x, y) = p (X, y) e j~t, 

which satisfies the equation 

where 

( t - -~2 )~  o~p ,,.,~o2p o"-fi + ---" -- ~/ /~ lv i -  + k2p Oy" Ox z = O, 

( 2 . 1 )  

( 2 . 2 )  

M={OM at e/2<lyf<b/2, 
at I Y I < e/2, 

k = mb/2c 0 is the reduced frequency of the vibrations, M = U/c 0 is the Mach number, and x, 
y and all the geometrical parameters (a, b, e) are assumed everywhere to be dimensionless, 
referred to b/2, with the following boundary conditions: 

the condition on the acoustic energy flux from the external source 

Op o~=~th~a.sin~[yl at  X----a, 1 y 1 > 8 / 2  (~----- V(g /2)z - -k2) ;  ( 2 . 3 )  

the impenetrability condition 

av/av == o, (x, y) ~ L/L1 (2 .4)  

(v is the amplitude function of the transient component of the gas velocity, L is the con- 
tour of the rigid boundary of the entire region, and L l is the right boundary of the region 
~); 

the approximate condition on the open parts of the boundary of 

p = 0 at X = c - - l ,  a ; F y J < ~ / 2 ;  ( 2 . 5 )  

the Zhukovskii-Kutta condition at the edges of the resonator 

[p] ~ Oat pointsx = c, y ~q-~/2; (2.6) 

the condition on the lines of contact discontinuity (c < x < a, IYl = e/2) [4] 

[p] = O, ikv m + MOv~/Sx = ikv~y (2.7) 

(v  z i s  t h e  a m p l i t u d e  o f  t h e  t r a n s i e n t  componen t  o f  t h e  g a s  v e l o c i t y  a t  y > s / 2 ,  and v2 i s  t h e  
same a t  y < e / 2 ) .  

The f u n c t i o n  v in  t h e  b o u n d a r y  c o n d i t i o n s  ( 2 . 4 )  and ( 2 . 7 )  can  be e x p r e s s e d  in  t e r m s  o f  
t h e  f u n c t i o n  p by means o f  t h e  C a u c h y - L a g r a n g e  i n t e g r a l ,  which  in  ou r  c a s e  i s  r e d u c i b l e  t o  
t h e  f o r m  

p : :  --poco(ik~ + MS~/Sx) ( 2 . 8 )  

(q) is the velocity potential amplitude function). 

3. METHOD OF SOLUTION 

By geometrical symmetry, we assume that the unknown function p is also symmetric about 

the x axis, i.e., 

0p/ay = 0 at Y = 0. (3. I) 

Adopting Eq. (3.1) as the boundary condition, we formulate the unknown functio~ for the 
upper half of the region D. To do so, we partition it_into three subregions: ~z, which is 
bounded by the straight lines (x = 0, a; y = e/2, i); ~2, which is bounded by the lines (x = 
c, a; y = 0, g/2); n0, which is bounded by the lines (x = c - s c; y = 0, e/2). In each of 
these subregions we represent the unknown function by series whose terms satisfy Eq. (2.2) 
and the corresponding boundary conditions (2.3)-(2.7), (3.1), viz.: 
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in ~o 

in ~l 

= (e-~h~ x _ e2i~(z-~)e~f 3~) + c~e  ~m(~:-O 

T ( t ~ l  ( 3 . 2 )  

co 

ch ~x ~ ~ ch ~'m (1 -- y) 
Pl = ~ sin ~ y -~ 7~ a.~ - _-- . . . .  

~=0 ch Em (t -- e/2) 
COS 4 ' ~ X  

( 3 . 3 )  

in ~2 

] 
n=1 ch in e/2 (3.4) 

n = a - - c  ~ - -  .t g ~ t - - e  -2ih~(a-c) " 

The  s e t  o f  f u n c t i o n s  P o ,  P~ ,  a n d  P2 r e p r e s e n t s  t h e  s o l u t i o n  o f  Eq.  ( 2 . 2 )  s u b j e c t  t o  c o n -  
d i t i o n s  ( 2 . 3 ) - ( 2 . 7 ) ,  ( 3 . 1 ) ,  e x c e p t  on t h e  p a r t  o f  t h e  b o u n d a r y  (0 < x < c ,  y = ~ / 2 )  o f  t h e  
r e g i o n  i l l .  The  a r b i t r a r y  c o n s t a n t s  i n  E q s .  ( 3 . 2 ) - ( 3 . 4 )  a r e  d e t e r m i n e d  f r o m  t h e  c o n d i t i o n  
f o r  m a t c h i n g  o f  t h e  f u n c t i o n s  P0 and  P2 :  

C3po/OX = c~p~/c~x a t  x = c, 0 < y < e/2; ( 3 . 5 )  

f r o m  t h e  f i r s t  c o n d i t i o n  ( 2 . 7 )  

Pl  = P ~  a t  : c < x < a , g  = r ( 3 . 6 )  

from the second condition (2.7) in conjunction with (2.4) on the section (0 < x < c, y = e/2) 

l O a t  O < x < ~ c ,  

[ - ~ e  e v 2 y d x  + vl~ c, a t  c < x < a  
r 

(Vly and V2y are the_projections of the amplitudes of the transient components of the veloci- 
ties in the regions ~i and ~2 onto the y axis). 

From the Cauchy-Lagrange integral (2.8) we find 

i @,. (3.8) 
l~]y PoCo k Oy ' 

e -ikx~ii x . h 
V 2 y = -  _ _  [!e  +vz~  2)"  ( 3 . 9 )  

P0C0 M �9 

I t  f o l l o w s  f r o m  c o n d i t i o n  ( 2 . 5 )  t h a t  

vly = v2,j = 0  a t  x =  c , g  = s/2. ( 3 . 1 0 )  

C o n s e q u e n t l y ,  m a k i n g  u s e  o f  E q s .  ( 3 . 8 )  a n d  ( 3 . 9 )  a n d  t a k i n g  Eq.  ( 3 . 1 0 )  i n t o  a c c o u n t ,  we 
t r a n s f o r m  Eq.  ( 3 . 7 )  a s  f o l l o w s :  

f e 
[ 0 at  O < x < c ,  y = y ,  

i ~[x Op 2 8, 
@ - - ~ - f e  3 ) ,  e -~-ydx a t  c < x < a ,  g - -  2" 

c c 

Forming the Fourier series expansion of the functional relations (3.5), (3.6), and (3.11) 
on the corresponding intervals, we obtain an infinite system of algebraic equations in the 
unknown constants am, bm, and c m. It can be shown that the coefficients of this system 
satisfy conditions such that the system can be solved by reduction. 
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4. SOME RESULTS OF CALCULATIONS AND THEIR ANALYSIS 

The acoustic pressure function p in the region ~ can be analyzed as a function of the 
normalized frequency parameter k of the external source for various values of M and the 
geometrical parameters of the region e, a, c, and s implementing numerically the foregoing 
schematically described solution of problem (2.2)-(2.7). We adopt the following as such a 
function, which well characterizes the acoustic vibration level in the region ~z: 

1 

T =  f [p (O, y) - -  p (a, y)l dy. 

Figure 3 shows the numerical dependence of T on k for M = 0.05, where the resonator 
essentially operates as a reactive unit, for c = 0.05, e = 0.2, a = 5, and s = 3.5, 5, and 6 
(curves 1-3, respectively). We see that when the parame!er k is equal to its resonance value, 
k 0 ~ 7/5, the function T(k) has a minimum in the region ~i and increases sharply in the 
vicinity of k 0. This fact is consistent with the results of the approximate resonator theory 
set forth in Sec. i. 

The influence of the Mach number on the resonator efficiency is illustrated in Fig. 4, 
where T(k) is plotted numerically for c = 0.05, e = 0.2, a = 5, M = 0.05, 0.2, 0.3, and 0.4 
(curves 1-4), and Z = 3.5 (a) and 4 (b). 

It is evident from Fig. 4 that the acoustic vibration level in the main region drops 
considerably in the presence of a jet, indicating that part of the acoustic energy is dissi- 
pated. This justifies treating the investigated resonator as an active absorber of acoustic 
energy. Part of the acoustic energy is evidently lost because of its conversion into tran- 
sient vortex streets shed from the edges of the resonator. The generation of these streets 
in the given model is accounted for by conditions (2.6) and (2.7). This effect is also con- 
firmed indirectly by the fact that the function T(M), all other conditions begin equal, is 
not monotonic. Indeed, since the intensity of the vortex streets generally increases with M, 
the given interpretation dictates that the dissipation of acoustic energy must also increase. 
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Also, we know from the theory of the dynamic absorber [2] that its eZliciency depends non- 

monotonically on the damping. 

Figure 5 shows the function T(k) for M = 0.2, e = 0.2, a = 5, s = 4.5, and c = 0.05, 
2, 3, and 4 (curves 1-4); this figure exhibits the major influence of the position of the 
resonator in the region ~ on the absorption of acoustic vibrations. The mechanism of this 
influence can be identified with the displacement of the field of acoustic disturbances ra- 
diated from the resonator relative to the normal mode of acoustic vibrations in the main 
region. 

In conclusion the author is grateful to V. A. Yudin for writing the program for the 
calculations. 
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INITIATION OF COHERENT MOTION IN TURBULENT COCURRENT FLOWS 

O. A. Likhachev UDC 532.517.4+532.526 

It has been established experimentally that organized motion is present in all turbulent 
shear flows. The presence of coherent motion in flows served as the basis for Townsend's 
creation [i, 2] of a turbulence model with a binary structure in which the undisturbed sur- 
rounding fluid is brought into the shear flow by coarse eddies which develop against a back- 
ground of small-scale turbulence. Townsend also developed the hypothesis of the universal 
similitude of free shear flows. In accordance with this hypothesis, at a sufficiently great 
distance from the source, motion is determined by the local scales of velocity and length. 
The scales depend on the type of flow and the external velocity and length scales. The aver- 
age motion, referred to the local scales, is described by universal functions which depend 
only on the method by which the motion comes about. Coarse eddies are in dynamic equilibrium 
with the average flow. This subsidiary condition determines the form and intensity of these 
eddies. Similitude has been proven to exist for plane shear layers [3-6], plane wakes [7-9], 
axisymmetric wakes [10-14], and axisymmetric shear layers and plane jets [15]. Here, char- 
acteristic local values of velocity and length are used as the scales. However, such scales 
depend to a significant extent on the experimental conditions (the presence of small harmonic 
perturbations [4-6, 8] and external turbulence [16] and, for cocurrent flows, the form of 
the body [7-14]) and other features of the experiment. The type of load and its character- 
istic frequency and scale are reflected in the coherent structures present in these flows. 
Some authors [6, 8] have attempted to describe external effects by using the theory of hy- 
drodynamic stability of inviscid flows. This theory can be used to analyze the response of 
a small harmonic perturbation. 

The memory of the initial conditions by the flow is a generally recognized factor as 
well, at least for the ranges which have been studied. However, it is not yet clear whether 
or not universal asymptotic similitude exists for each type of free shear flow. I~ is dif- 
ficult to explain the absence of such similitude in turbulent flows as being the result of 
intensive energy transfer between different scales of motion. Coherent large-scale struc- 
tures have been recorded in developed turbulent flows at very large distances from the 
source. The mechanism of their reproduction may be hydrodynamic instability of the average 
flow. If a turbulent shear flow is modeled as a flow with a certain effective viscosity vt, 
then the corresponding turbulent Reynolds numbers (Re t) will be finite and will determine 
whether the flow will be stable or unstable against longwave perturbations. At values of 
Re t less than the critical value, the flow will be stable, and degeneration of small-scale 
turbulence will result in a decrease in ~t and a consequent increase in Re t. The flow will 
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